48 F
Washington D.C.
Friday, March 24, 2023

This Chilling Effect on Stacked Chips Could Ignite Computing at the Edge

There’s increasing recognition that 3DHI – which integrates different circuit types and materials in a 3D stack of tiers – promises tremendous performance advantages.

As the future of microsystems technology converges around three-dimensional heterogeneous integration (3HDI) microelectronics, the scientists, researchers, and engineers working to advance the state of the art – including at DARPA – are arriving at the same challenge: How can we pack the maximum computing into the smallest-possible space, and how can we manage the heat inherently generated by high-powered processing, especially in such a small space?

There’s increasing recognition that 3DHI – which integrates different circuit types and materials in a 3D stack of tiers – promises tremendous performance advantages. However, thermal management technologies currently limit implementation. While stacking chips will be a critical part of the future of computing, challenges in dissipating the heat of internal processing components remains a barrier to significant progress.

“This is a key problem that we’ll be trying to address, developing cooling technologies that will enable the 3DHI systems that are absolutely the key direction for continued growth in microelectronics,” said Dr. Yogendra Joshi, program manager of DARPA’s newly announced Miniature Integrated Thermal Management Systems for 3D Heterogeneous Integration (MiniTherms3D) program. “In any high-functional computing system, particularly as you make them more compact, there is heat you must get rid of. In a stack today, heat is transmitted to the top and/or bottom, transported away, and ultimately rejected – typically to ambient air. High-powered 3D stacks are not currently possible, because the interior temperatures would become unacceptably high, and exterior heat rejection systems would be unacceptably large.”

Joshi likened the stacks to high-rise buildings in which one floor is stacked on top of the other. The new cooling technology would allow for cooling not just on the top and bottom floors, but throughout every floor of the “building.”

MiniTherms3D aims to address this problem from multiple perspectives – and if successful, would enable countless high-powered, multi-tiered 3DHI applications. For the Department of Defense, that could include advanced, concurrent radar processing for unmanned aerial vehicle platforms, as well as high-speed, high-volume data analysis on the move and at the edge.

The program’s efforts align with the broader Electronic Resurgence Initiative (ERI) 2.0, DARPA’s sweeping effort to collaboratively advance state-of-the-art, next-generation electronics, benefiting national security and industry alike.

“MiniTherms3D is a central part of what we’re trying to do under ERI 2.0,” Joshi said. “Making systems more functional, more powerful, able to do more things – in all of these endeavors, thermal management is a fundamental challenge. Our goal is to overcome these challenges to enable growth in systems capabilities, including in radio frequency systems, image analysis, and high-performance computing for applications at the tactical edge.”

MiniTherms3D is a 48-month, three-phase program. A Proposers Day is scheduled for Jan. 27, 2023; details can be found in the Special Notice. More information on the program can be found in the Broad Agency Announcement.

Read more at DARPA

Homeland Security Todayhttp://www.hstoday.us
The Government Technology & Services Coalition's Homeland Security Today (HSToday) is the premier news and information resource for the homeland security community, dedicated to elevating the discussions and insights that can support a safe and secure nation. A non-profit magazine and media platform, HSToday provides readers with the whole story, placing facts and comments in context to inform debate and drive realistic solutions to some of the nation’s most vexing security challenges.

Related Articles

Latest Articles