The emergence of the SARS-CoV-2 virus in Wuhan, China, in November 2019 and its subsequent worldwide spread has had tremendously destabilizing effects, which are still being felt more than two years later. Lessons from COVID variants include immediate impacts at the local level (initial variant), global pandemic effects from the Delta variant to include significant and protracted economic impact, and the more sub-lethal, sustained economic, political, and healthcare impacts of the Omicron strain. The global SARS-CoV-2 pandemic has also highlighted the ongoing biological revolution that has resulted in the rapid development and employment of new diagnostic tests, vaccines, and other targeted treatments including monoclonal antibodies and antiviral drugs. Over the past decade, the intersection of technology (e.g., computer science, automation, DNA sequencing) and biology has expanded exponentially, becoming embedded in economies and society. This intersection, along with the demonstrated impacts of SARS-CoV-2, is fraught with opportunities and risks. The tools for curing genetic diseases, reducing the effects of climate change, and generating sustainable food sources are now being developed and tested. Yet, these same gene editing tools could be employed to generate and modify biological weapons, making it important for both the counterterrorism community and scientific community to anticipate how the scientific advances may change the bioterrorism threat landscape.
In this article, the authors consider the theoretical potential for bioterrorists to select a viral platform and genetically modify viral transmissibility, incubation and infectious time windows, and lethality along with the manner of death, creating what are in essence tunable bioweapons. Such bioweapons could achieve targeted effects tailored to timescale, physical and psychological effect, with intended tactical, operational, and strategic levels of impact, with the most impactful viral agents producing all three effects.
To anticipate the potential future threat posed by tunable viral agents, the article first examines the advancing biotechnological toolkit that bad actors may be able to exploit. It then delves into the singular threat posed by viral agents compared to other potential forms of weaponized pathogens such as bacteria, with the COVID-19 pandemic underscoring the threat posed by highly transmissible viruses. The next section describes how biotechnology tools allow for the bioterrorist to select a viral “chassis” and then prospectively genetically tune the respective system variables of lethality, transmissibility, and infectious window for tactical, operational, or strategic effects, or, to maximize impact, combinations thereof. The piece then discusses the duality of emerging biotechnology tools for developing and deploying potential bioweapons as well as their countermeasures. The article closes with some concluding observations.