31.7 F
Washington D.C.
Friday, January 27, 2023

USGS Scientists Add Another Piece to Puzzle of How Hurricanes Can Gain Strength

Unique observations collected by U.S. Geological Survey scientists during Hurricane María in 2017, revealed previously unknown ocean processes that may aid in more accurate hurricane forecasting and impact predictions.

Such forecasting is critical in preparing communities in the storm’s path to help minimize the loss of life and the long-term repercussions of damage to critical infrastructure such as airports, communications networks, roads and power grids.

The research, published in the journal Science Advances, reveals how the interaction between ocean islands and extreme storms can generate underwater currents that make the storms more powerful. The results are applicable to the thousands of islands in the world’s tropical oceans subject to these types of weather systems.

“We were surprised to find that the direction of the approaching hurricane winds relative to the coastline kept the ocean surface layer distinctly warmer compared to the colder waters below,” said USGS oceanographer Olivia Cheriton, lead author of the paper. “This is important because warmer sea surface temperatures provided more energy for the storm.”

Researchers from the USGS and the University of Puerto Rico-Mayagüez did not set out to make observations during a hurricane. In the summer of 2017, they deployed a large suite of subsurface oceanographic instruments off the southwest coast of Puerto Rico to study the area’s coral reefs. Those plans changed when Hurricane María, the strongest weather system to hit Puerto Rico since 1928, made landfall on Sept. 20, 2017.

“We had originally planned to recover the instruments in October 2017, but that all changed after Hurricane María,” said Clark Sherman, UPR-M professor of marine science. “It was not until January 2018 that we were able to get back in the water and we weren’t sure what, if anything, would still be there.”

The instruments not only survived the passage of Hurricane María, they collected a rare, high-resolution set of underwater ocean observations not detectable by more common surface observation platforms, such as buoys or satellites. In addition, this type of subsurface information is not currently incorporated into ocean hurricane model simulations. Doing so may improve forecasts.

Understanding how the underlying ocean temperature changes in response to hurricane forces is critical to accurately forecasting the tracks and intensities of extreme storms. Hurricane María caused thousands of deaths, more than $90 billion in damage and the largest electrical blackout in U.S. history.

“While hurricane research along the U.S. Gulf and East Coasts continues to advance, much less is understood about hurricane interactions with small islands, whose communities are especially vulnerable to hurricane impacts,” said Curt Storlazzi, USGS research geologist and the project’s chief scientist.

Information from this study is intended for use by a wide variety of scientists and emergency managers working on hurricane forecasts and impacts to coastal communities.

Read more at USGS

Homeland Security Todayhttp://www.hstoday.us
The Government Technology & Services Coalition's Homeland Security Today (HSToday) is the premier news and information resource for the homeland security community, dedicated to elevating the discussions and insights that can support a safe and secure nation. A non-profit magazine and media platform, HSToday provides readers with the whole story, placing facts and comments in context to inform debate and drive realistic solutions to some of the nation’s most vexing security challenges.

Related Articles

- Advertisement -

Latest Articles